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SOLVING THUE EQUATIONS 
WITHOUT THE FULL UNIT GROUP 

GUILLAUME HANROT 

ABSTRACT. The main problem when solving a Thue equation is the computa- 
tion of the unit group of a certain number field. In this paper we show that the 
knowledge of a subgroup of finite index is actually sufficient. Two examples 
linked with the primitive divisor problem for Lucas and Lehmer sequences are 
given. 

1. INTRODUCTION 

Let P be an irreducible form whose degree is at least three, and a a rational 
number. We are interested in the solution of the Thue equation: 

(1) P(X, Y) = a. 

Despite numerous recent improvements, the algorithmic solution of this equation 
still relies on the algorithm described in [21]. 

The method works as follows: the original equation is reduced to a linear unit 
equation; then one expresses the unit as a product of powers of fundamental units 
of the associated number field. The coefficients of this decomposition are bounded 
using Baker's theory of linear forms in logarithms, and the bound is reduced by 
mean of the continued fractions algorithm or of the LLL lattice basis reduction 
algorithm. The values within the bound obtained after reduction can be enumerated 
in several ways. 

The "reduction step" and the "enumeration step" have been widely investigated 
and improved recently; see [2, 3, 14, 19] for details. We shall focus on the initial 
and "implicit" step, i.e., computing the unit group. 

It is well-known [6, 7] that computing a system of fundamental units of a given 
number field is a hard problem; indeed, it seems to be the major, if not the sole, 
bottleneck of the method. 

We reduce this problem to the problem of computing a system of units which 
generates a subgroup of maximal rank of the group of units. 

Rather than giving yet another account of a general method for solving Thue 
equations in a slightly more general context, we chose to show two examples which 
actually occurred during the investigation of the problem of primitive divisors of 
Lucas and Lehmer sequences. In both cases, it seems almost impossible to obtain 
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a system of fundamental units, whereas obtaining a system of units that generates 
a subgroup of finite index is extremely easy. 

2. COMPUTING A MAXIMAL SYSTEM OF UNITS 

Computing a system of fundamental units is often a surprisingly difficult task. 
The currently most popular method, which is due to Hafner and McCurley [9] 
for quadratic fields and to Buchmann, Cohen, Diaz y Diaz and Olivier [5, 7] for 
general fields, produces a system of units which is always of maximal rank. Under 
the assumption of the generalized Riemann hypothesis, it can be proved to be 
fundamental in decent time. 

This system of units can be "certified", i.e., unconditionally proved to be funda- 
mental, but this "certification" process is usually very slow as soon as the invariants 
of the corresponding number field grow (degree, regulator, ... ). 

In this context, our adaptation of the method allows one to avoid the certification 
process, and still to obtain unconditional results where one had to assume the 
generalized Riemann hypothesis. 

In the first example described below, the number field involved is of degree 41, 
and so it seems hopeless to obtain fundamental units by usual methods; however, 
our number field is a subfield of a cyclotomic field, and the cyclotomic units give 
us a system of independent units, which is a priori not fundamental. 

In the second example, the number field involved can be chosen among 18 differ- 
ent number fields, one of which is of degree 4, another one being of degree 5. But 
the fundamental units for both of them are very large, and the certification process 
fails (actually, we stopped the computations after one day, since our method allows 
us to complete the solution of the corresponding equation in less than 10 minutes). 

Note that this method has no analogue for the norm equation, i.e., one still has 
to determine a complete system of nonassociate solutions of the norm equation 
modulo the full unit group. 

3. PRIMITIVE DIVISORS OF LUCAS AND LEHMER SEQUENCES 

Let a and 3 be two algebraic numbers such that a + 3 (or (a + p3)2 in the case 
of a Lehmer sequence) and al3 are both rational integers, and a/:3 is not a root of 
unity. 

The corresponding Lucas sequence (Un) and Lehmer sequence (vn) are defined 
by 

an- an/a 
for n odd, 

a-/3 a 3n for n even. 

A number p is said to be a primitive divisor of a Lucas sequence if p divides Un 
but p does not divide (a -_ 3)2u2 ... Un-1. For a Lehmer sequence, the definition 
is: p divides Un but not (a2 _ /32)2 u3 ... UQn-1 

For large values of n, it is known [17, 18] that the n-th term of any Lucas or 
Lehmer sequence has a primitive divisor. For small values of n, the problem can 
be reduced to the solution of Thue equations by the use of the following: 

Lemma 3.1. Let n > 4, n 7& 6,12. Let q$n(X) be the n-th cyclotomic polynomial, 
bn(X Y) = Xn Onq(Y/X), and P+((n/(n, 3)) the largest prime divisor of n/(n, 3). 
Then Un has a primitive divisor if and only if 4bn(a,/3) 7& ?J1, ?P+ (n/(n, 3)). 
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Proof. See [18, Lemmas 6 and 7]. D 

Moreover, one has 
n/2 

??n(;3) - fi (a2 + '32 - 2a/3cos(2j7r/n)). 
j=1,(j,n)=1 

Since a + 3 (or (a + 3)2) and al3 are rational integers, so is a2 + /32, and the 
criterion above reduces to the solution of four Thue equations of degree (p(n)/2. 

Voutier [23] has solved the corresponding equations for n < 30, finding all the 
sequences for which the n-th term has no primitive divisors. In [3] Bilu and I 
treated the case n = 67 as an example, and in [4, 10] a few more examples are 
given. Voutier [24] has recently solved the primitive divisor problem in the case 
max(log laol, log 131) < 4. 

The following two sections describe the problem encountered when trying to solve 
the corresponding Thue equations for n = 83,4001, namely that the computation 
of the full unit group turns out to be very difficult, whereas the computation of, a 
subgroup of finite index is relatively easy. 

4. THE 83RD TERM 

In this section, we consider the equations 

(2) 11 (Y - 2cos (2k) X) =?1,? 83. 

4.1. A preliminary lemma. The field Q (cos(2"')) has degree 41 over Q, which 
implies in particular that this field is primitive. Thus, we cannot use the method 
of [4]. 

Write the corresponding Thue equations as F(X,Y) - a, and put g(Y) = 

F(1,Y). The classical method for solving a Thue equation relies on the remark 
that any "large" solution (x, y) should provide a very good rational approximation 
to one of the real roots of g. Here is an effective version of this remark. In the fol- 
lowing lemma, as in all this paper, Log will be the principal branch of the complex 
logarithm, i.e., -7r < Im Log z <w7r. 

Lemma 4.1. Let (x, y) be an integer solution of (2). 

(i) If lxl > 1, then for some koE {1,. . ., 41} we have 
(3) 2cos (~~y2koir> 3.39.-1012 

(3) x-2 cos ( 3 < j x 83) Ix141 

(ii) Let 

( 2 cos ( -2 - 2cos (283k), k#ko, 

g'(2cos (27rko)) k=ko j{4O, k-o 

Then, if lxl > 2, we have 

() y - 2cos ( 83k) x 1.65. 1016 
(5) ~~~Log ./kPk < 

OkXPk 
- 

I~~xi41 
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Proof. (i) is just [3, Proposition 2.2.1, (i)]. 

(ii) Now, if k 7& ko, then 

y/x-2 cos (2"k) 1 y/x-2 cos (283k) 

'Ok 'Ok 

Since Kk ? > 4 sin(i7r/83) sin(27r/83), we obtain 

(6) |y/x -2 cos (283) - 2.962. 1014 

x41 

Since JLog(u)J < 1.39ju - 1i when u - 11 < 1/2 (see [21, p.106]), and since for 
xl > 3 one has 2.962. 1014/1xI41 < 1/2, one sees that 

y-2cos ( 83 )X 4.12.1014 
Log <VXk - 

For the case k ko, since H1<k<41(Y - 82cos (83) X) a, write 

yL y-2cos (2rko) Hk|kIL(2cos (283ko) -2cos (2lrk)) X40 
Log Log Hk#ko Y-2cos ( 2i )X 

< S Log fkX 
k#ko yc (83) 

4.12. 1014 1.65. 1016 
< 40 

x4l - 41 

I~~~~~~~ 

4.2. Reduction to units. Let M be a complete set of solutions of the norm 
equations NK/,Q(pU) = ?1, ?83 modulo the multiplicative action of the unit group, 
e.g. M-{1, 2 - 2cos (2)}. 

The quantity y -2 cos (2ik) x, the norm of which is equal to a, can be written 
y-2 cos(2k) x = ,ta, where r1 is a unit and , is in M. 

At this point one usually requires that a system ??i,... , r of fundamental units 
be known; the equation is then transformed into an exponential one by writing 
77 = +nlbl ... 7br 

One way to avoid the knowledge of the full unit group is to enlarge the set M 
by considering the set of solutions of the norm equation modulo the multiplicative 
action of the known subgroup U'; see [15] for instance. We propose here an alter- 
native approach, which we believe is more practical, based on the following remark: 
for any solution (x, y), there are a unit r1 in the group U', an element ,u of the set 
M, and an integer bo, not larger than the index [UK : U'], such that 

(7) (y 2cos ( 2rk )) bo 

Take for U' the group generated by the cyclotomic units 

%/(k) = sin(kl7r/83)/sin(k7r/83), 1 < k < 41, 2 < 1 < 41. 

It is known that under the generalized Riemann hypothesis, one has U' = UK; 
see [13]. However, this result relies on Odlyzko's effective version of Cebotarev's 
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theorem, and though more extensive computations have been done since the paper 
[13] (see [12]), it does not seem that the use of the generalized Riemann hypothesis 
can be avoided. 

Now, there exists an r-tuple (bl, . . , b,) such that r1 = 71.. .r1. The next step 
is to obtain an upper bound for all the bi. 

4.3. An upper bound for bo. The index [UK : U'] can be expressed as the quo- 
tient of the regulator of the cyclotomic units by the regulator of the field. Deriving 
an upper bound for the index thus means finding a lower bound for the regulator 
of the field. The large degree of the field prevents us from using ad hoc techniques 
such as those described in [16]. We shall instead use the bound given in [8], i.e., 
RK > 85.4. Computing the regulator of the subgroup generated by the cyclotomic 
units, we find that bo < B:= 3.5. 1023. 

4.4. An upper bound for bi. In view of (7), we can rewrite (5) as 

(k) ~~~~~~~~~1.65 - 1016 
, bliq bo lrog) - < bOPk log41 | bo 141 

1=1~~~~~~~~~~~~~~~~k 
Now let A = [ak1]1<k,1<40 be the inverse of the matrix [log 11k) 1] (which is invertible, 
since the units are independent). We obtain 

bk r r r .1.65bo .1016 
-bk-bo aklPl log |x Ibo akl1o l //bt() I< max lakl 1 41 

(8) < 7.24bo 1016 
(8) < 

I~~~~~~~~~~~~~~~~x141 

For any choice of ko, lZl=laklpll < 4.39, and E' 1akll109 l/1u(l)I 
< 2.801. 

Since 7.24bo . 10161xK-41 < 0.002 when lxl > 3, we obtain the bound lbkl < 

bo(4.39 log Ixl + 2.81), valid for Ixl > 3. This implies in particular that 

1/|x141 < 2.5. 1011 exp(-9.33 max lbkl/bo); 
1<k<40 

plugging this estimate into (8), one gets 

bk - bo akpl log 1 x0 - b bo aki log 10 bl/tl(') I 
(9) = = 

< 1.9 1028boexp(-9.3 max lbkl/bo). 

Let us now pick 1 < k1 < k2 < 41, with k1 and k2 both different from ko. It is 
easy to see that 

(10) , Lk2(y2cos(2k) X) 
k, l (y-2 cos (27rk2) x) 

is different from 1, since the contrary would imply that y = 2 cos ( 27rko) . 

Since the field is totally real,1 1bo = 1 can occur only for IQ = -1. However, by 
(6), for Ixl > 3, one has Logii I 2.26 10-5. 

1Note that a similar argument applies even if the field is not totally real; one just needs to find 
an xo such that {Log TI' < 27r/B for I xI > xo. 
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Hence, since (10) is not -1, we can use the Baker-Wiistholz theorem [1] for the 
logarithm of the modulus of the bo-th power of (10), which is nonzero: it gives a 
lower bound for the quantity 

A b0 log 
ki) ki) (k1) 3.3.- 1016 bo 

A\ = |bo log | SOk, 

A 

- 
+ b, log |7 (k 

- 
+ **+ br log | ( )| < 

'Oki A(k2) ( k2)bilog2+bIlog 4k 

where A LogQI', namely 

A > exp(-1.41. 10257 logmax Ibi). 

The upper bound can be expressed in terms of maxo<1<41 Ibi ; the comparison 
of these two bounds yields maxo<z<41 lbil < 3.5. 10282. 

In the sequel, Baker's bound will be denoted by B, whereas the bound on bo will 
still be noted 13. 

4.5. Reduction of the bound. The reduction of Baker's bound is the technique 
that has been the most extensively studied recently. We apply the method of [2], 
which is the most efficient, slightly adapted to the present context. 

Put 5i = Ej aij pj, Ai = Ej aij log Loj //(i) |. Let io be such that c0io l = max 16i l, 
and define &i = 6i6- Ai -=iio - Ai. Combining two different conjugates of the 
inequality (9), namely the ith and the ioth, we get 

(11) JboAi - bi i + bio < 3.8bo 1028exp(-9.33 max Jbil/bo). 
1<i<40 

Note that if we use the extreme sides of the inequality (8), we obtain 

(12) < ~~ ~ 1.5bo 4 017 
(12)~~~~~~ gbji -bi 6i + bio I - IX141 

Now, consider the lattice generated by the columns of the matrix 

( [Bo/J8 0 0 0 

(13) ]0 1- 0 / 

LCAi2l - LC6i21 0 c 

with C slightly larger than 3B+B, and where for any real x, Lxi = [x + 1/2j. 
The idea of using a "weight" different from 1 when one has better control on 

one of the vaiiables goes back to [22]. It allows a slightly better reduction, but the 
main feature of this trick, though, is that the value of C, and thus the precision 
needed, is significantly smaller. 

Let 1 be the length of the shortest vector of an LLL-reduced basis. 
The reduction process relies on the following: 

Lemma 4.2. Suppose that 1 > 20Bo + 8B013 + 432. Then 

max Ibbi < 0.llbo(logC + 67.2 - log( 2--16Bo -2Bo-213)). 
1<i<r 

Proof. By [11, (1.12)], we know that for any (bo,bio,bil,bi2) E 24, we have 

(LBo/8 bo)2 + bio + (bo LCAi 1 -bio LCSii 1 + bilC)2 

+ (bo LCAi21 -bio LC5i21 +b2 0)2> b 
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Now, 

lboLCAil - bio LC6i, + bilC - C(boAil - bio 0i + bil)I < (bo + bil)/2 

and a similar inequality holds for i2, so that one has, if 1 > 4Bo, 

max l BboAilB-?bioi + bil > ? _B) 
C{iil,i2} C~ 16 02 1 

Now one just needs to compare this lower bound with (11). This concludes the 
proof. El 

Two steps of reduction, respectively with C = 3.9. 10442 and C - 4 1056, 
give maxl<i<r lbil < 5.2 1024. Further reductions do not significantly improve the 
bound. 

Let B* be the bound for maxl<i<4lbil after reduction. 

4.6. Final enumeration. There are usually several ways to enumerate all the 
possible (r + 1)-tuples: 

* straightforward enumeration of all the possibilities; the number of (r + 1)- 
tuples to check is (2B* + 1)r 3, 

* intelligent enumeration similar to the one described in [3]; the number of 
r + 1-tuples to check is (2B* + 1)B3, 

* sieving, as in [22]. 

However, due to the size of the reduced bound, none of these methods can be 
applied. 

It appears that it is possible to avoid enumerating the bi by using 

Lemma 4.3. Let 1 be the length of the shortest vector of an LLL-basis of the lattice 
(13). Suppose that 1 > /20Bo + 8B13 + 432. Then any x solution satisfies 

/ 0~~~ 1/41 

lXI < 10.2 ( 12- _16B*2-2B*2-3) 

Proof. Similar to that of Lemma 4.2, but uses the upper bound (12) instead of (11) 
at the last step. F 

Instead of the gigantic bound on B, we get the bound [xl < 50. After enumer- 
ating2 the corresponding values of x, we find out that we have proved 

Theorem 4.4. The 83rd term of any Lucas or Lehmer sequence has a primitive 
divisor. 

Proof. The only solutions of the equation are (0, 1), (1, 0), (1, 1), +(1,-1), 
+(-1, 2), +(1, 2), which correspond to pairs (ai, ,3) with a/,3 a root of unity. El 

The total computational time for this example (on a PC Pentium Pro 200MHz), 
using pari version 2.0.2, was 20 minutes. 

2or appealing to Voutier's result [24] 



402 GUILLAUME HANROT 

5. THE 4001ST TERM 

In this section, we show that the method of [4] can be adapted along the same 
lines as the method of the previous section. We shall also see that the problem of 
computing fundamental units can occur even for very modest examples. 

We shall consider the equation 

(14) YJ (- 2cos (27rk) X) +1 ?4001. 
1< k< 2000 4001/ / 

The field L - Q(2 cos (421)) is a cyclic extension of Q, with Galois group 
G = G(L/?Q) = (Z/4001Z)*. Note that z I-> 3Z defines an isomorphism from 
Z/40002 onto G. We will identify G with Z/40002. 

For any divisor 1 of [L: ?Q] = 4000, there exists a unique subgroup 1Z/4000Z of G 
of order 1' = 4000/1. By Galois theory, the fixed field of this subgroup is the unique 
subfield 1K of L of degree 1. The action of the Galois group G(L/K) = {'Ti,... , Tri} 
on L is given by 

-ri(2 cos ( 4001)) =2cos (4001) 

The minimal polynomial of a generating element of such a subfield can be de- 
rived using elementary Galois theory. See [4] for further details and formulae for a 
generating element of a given subfield. 

Using this procedure, one can exhibit the following "small" subfields 

* K, generated by a root of x4 + x3 -150092 + 23756x - 81536, 
* K', generated by a root of x5 + x4 -1600x3 - 20325X2 + 123999x + 321199. 

It is rather easy, using pari, to compute a system of units of full rank 3 for both 
these fields; however, the regulator of the first system is around 164000, and the 
regulator of the second one is slightly less than 900000. It is hopeless to certify 
such a system of units. This shows, for instance, that the Thue equation x4 + 
x3y - 1500x2y2 + 23756xy3 - 81536y4 = +1 requires the method of the previous 
paragraph to be solved. 

5.1. A preliminary lemma. In the sequel, a(ik) will denote 2 cos (2 34ki), for 

1 < i < 4 1 < k < 500. Let (x, y) be an integer solution of (14). Put 

W(i) - j (y - a(ik)x) 

1<k<500 

Note that for rj E G(L/K) defined as above, with l = 4, one has 'j(a(ik)) - 

a i(k+j)), which means that G(L/K) fixes (p(i), and, by Galois theory, that p(i) E K. 
The following lemma is an analogue of Lemma 4.1. 

Lemma 5.1. (i) If lxl > 1, then for some (io, ko) E [1, 4] x [1, 500] we have 

(15) Y _ a (ioko) < 1-77 l 102 

x - 
I i2 0 

3which is fundamental under the generalized Riemann hypothesis 
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(ii) Let 

]jH (a(ik) - a(ioko)) i 7 io, 

|<k<500 

-1 fsoo~~~~~50, i#7~ko, 
(16) Pi = p = 8-\-1500, i=k0. 

-1-I ~~~~~~'~-150' =ko a I| i6 t=t, 
( 1?j?4 

Then, if [xl > 2, we have 

(17) Log ,Pi| < 2 
007 

Oi xPi I 1x12000 

5.2. Reduction to units. Let 0 be a root of the polynomial x4 + x3 - 1500X2 + 
23756x - 81536. The coefficients of an integral basis of K with respect to the power 
basis are given in the following table: 

= 1 02 0}3 

,V2 0 1 0 0 
v3 -2/5 1/2 1/10 0 

_4 -4/25 -47/100 3/200 1/200 

A system of units of finite index of K is given with respect to the integral basis 
by the following table: 

71 - _72 73 
vi 2579620139 -68133221488165211383 1305916649079360678869 
v2 -534883224 31300841079878935930 -328312134982958131010 
V3 44573602 -16828180003143035894 97359743058696947252 
V4 89147204 7032960282239282204 80531563055553911358 

The prime 4001 is totally ramified in K. The set M = {1, 664835v, - 43952V2 - 

40481v3 + 4482v4} is a complete set of nonassociate solutions of the norm equations 
NK/Q(z) = ?1, ?4001. 

Just as in the preceding section, we can write fbo = ,q , where 17 is in the 
subgroup of the unit group generated by {171, '12, 773}I 

Using Kant v.1.7, we derive the regulator bound Rx > 44.8. Note that the 
bound actually implemented is not that of [16], but a much weaker one, so that it 
is probably possible to improve on 44.8. 

Since the regulator of the unit system {771, q2, 773} is less than 164175, we can 
assume that bo < B := 3664. 

Now put 7 = q 61 2 r3. By arguments similar to those of the preceding section, 
we derive the upper bound Ibij < 31.7bo log IxI + 3bo, as soon as Ixj > 3, so that 

l/lx12000 < 1.6. 1082 exp(-63maxj<i<3 |bil/bo). 
Now let 1 < il < i2 < 4, with il and i2 both different from ko. One can prove 

that for at least one choice of (il, i2) the quantity 

(18) =i2 il 

iil roi2 

is different from 1 (see [4]). 
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Moreover, for Ixl > 3, by (17), [Log T I < 5.73. 10-347, hence T $ -1. Therefore, 
we can use the Baker-Wiistholz theorem for the logarithm of the modulus of bo, 
which gives us the lower bound 

exp (- 8.9 1040 log max Ibi) < 
bll)71 

bolog 
+2 

bog (i2) 
1<1<3 71l 

The upper bound (17) can be used to derive an upper bound for the same 
quantity; expressed in terms of maxo<1<3 IbiI the comparison of the two bounds 
yields max0<i<3 lb-I < 1.1 1045. The reduction works in a similar way as previously; 
after two steps one gets maxl<i<3 Ib-I < 97000. Using a lemma similar to 4.3, one 
finds out that for any solution (x, y), one has IxI < 2. The corresponding solutions 
are the same as in Section 4; we have just proved 

Theorem 5.2. The 4001st term of arny Lucas or Lehmer sequence has a primitive 
divisor. 

The total computation took 6 minutes and 30 seconds. 

6. COMPARISON WITH THE METHOD USING THE FULL UNIT GROUP 

One may have expected the method described in this paper to be significantly 
slower than the method using the full unit group. This is however not the case. 

There is only one computational drawback, which occurs during the reduction 
step. Usually, one needs only to compute one continued fraction expansion (or 
reduce one lattice) for each value of ko. With the present method, the corresponding 
lattice depends not only on 6i but also on Ai. In section 4, this amounts to reducing 
one lattice per solution of the norm equation, which is (almost) negligible. In section 
5, we have to reduce one lattice per pair (io, ko), i.e. 500 times more than by the 
classical method. However, the computational time is not at all unreasonable, due 
to the small dimension of these lattices. 

One could also argue that the fact that we obtain a very good bound on lxl 
whereas we obtain a very bad one on B comes mostly from the fact that we are 
considering very high degree equations. This does not seem to be the case. For the 
equation x4 + x3y - 1500x2y2 + 23756xy3 - 81536y4 = +1, we got, by the same 
arguments, the bound lxl < 16. 

It is my belief that this adaptation of the classical method is particularly well- 
suited to the solution of Thue equations appearing when one is trying to find 
out integral solutions of equations yP = f(x) by the so-called "Thue descent". 
In that situation, the Thue equations one needs to solve are indeed often rather 
complicated, and the corresponding units are often difficult to compute and still 
more difficult to certify. See for instance [20] for an example. 
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